

Welcome to MagNet’s documentation!

Package Reference

	magnet

	magnet.data
	Data

	Core Datasets

	Transforms

	magnet.nodes
	Node

	Core

	magnet.training
	Trainer

	SupervisedTrainer

	magnet.training.callbacks
	CallbackQueue

	Monitor

	Validate

	Checkpoint

	ColdStart

	LRScheduler

	magnet.training.history

	magnet.training.utils

	magnet.debug

	magnet.utils

	magnet.utils.images

	magnet.utils.plot

	magnet.utils.varseq

Indices and tables

	Index

	Module Index

magnet

	
magnet.eval(*modules)

	A Context Manger that makes it easy to run
computations in eval mode.

It sets modules in their `eval mode and ensures
that gradients are not computed.

This is a more wholesome option than torch.no_grad() since many Modules
(BatchNorm, Dropout etc.) behave differently while training and testing.

Examples:

>>> import magnet as mag

>>> import magnet.nodes as mn

>>> import torch

>>> model = mn.Linear(10)

>>> x = torch.randn(4, 3)

>>> # Using eval() as context manager
>>> with mag.eval(model):
>>> model(x)

>>> # Use as decorator
>>> @mag.eval(model)
>>> def foo():
>>> return model(x)
>>> foo()

>>> # The modules can also be given at runtime by specifying no arguments
>>> @mag.eval
>>> def foo(model):
>>> return model(x)
>>> foo()
>>> # The method then takes modules from the arguments
>>> # to the decorated function.

magnet.data

Data

	
class magnet.data.Data(train, val=None, test=None, val_split=0.2, **kwargs)

	A container which holds the Training, Validation
and Test Sets and provides DataLoaders on call.

This is a convenient abstraction which is used
downstream with the Trainer and various debuggers.

It works in tandem with the custom Dataset, DataLoader and Sampler
sub-classes that MagNet defines.

	Parameters

	
	train (Dataset) – The training set

	val (Dataset) – The validation set. Default: None

	test (Dataset) – The test set. Default: None

	val_split (float [https://docs.python.org/3/library/functions.html#float]) – The fraction of training data to hold out
as validation if validation set is not given. Default: 0.2

	Keyword Arguments

	
	num_workers (int [https://docs.python.org/3/library/functions.html#int]) – how many subprocesses to use for data
loading. 0 means that the data will be loaded in the main process.
Default: 0

	collate_fn (callable [https://docs.python.org/3/library/functions.html#callable]) – merges a list of samples to form a mini-batch
Default: pack_collate()

	pin_memory (bool [https://docs.python.org/3/library/functions.html#bool]) – If True, the data loader will copy tensors
into CUDA pinned memory before returning them. Default: False

	timeout (numeric) – if positive, the timeout value for collecting a batch
from workers. Should always be non-negative. Default: 0

	worker_init_fn (callable [https://docs.python.org/3/library/functions.html#callable]) – If not None, this will be called on each
worker subprocess with the worker id
(an int in [0, num_workers - 1]) as input, after seeding and
before data loading. Default: None

	transforms (list [https://docs.python.org/3/library/stdtypes.html#list] or callable [https://docs.python.org/3/library/functions.html#callable]) – A list of transforms to be applied to
each datapoint. Default: None

	fetch_fn (callable [https://docs.python.org/3/library/functions.html#callable]) – A function which is applied to each datapoint
before collating. Default: None

	
__call__(batch_size=1, shuffle=False, replace=False, probabilities=None, sample_space=None, mode='train')

	Returns a MagNet DataLoader that iterates over the dataset.

	Parameters

	
	batch_size (int [https://docs.python.org/3/library/functions.html#int]) – How many samples per batch to load. Default: 1

	shuffle (bool [https://docs.python.org/3/library/functions.html#bool]) – Set to True to have the data reshuffled
at every epoch. Default: False

	replace (bool [https://docs.python.org/3/library/functions.html#bool]) – If True every datapoint can be resampled per
epoch. Default: False

	probabilities (list [https://docs.python.org/3/library/stdtypes.html#list] or numpy.ndarray [https://docs.scipy.org/doc/numpy/reference/generated/numpy.ndarray.html#numpy.ndarray]) – An array of probabilities
of drawing each member of the dataset. Default: None

	sample_space (float [https://docs.python.org/3/library/functions.html#float] or int [https://docs.python.org/3/library/functions.html#int] or list [https://docs.python.org/3/library/stdtypes.html#list]) – The fraction / length / indices
of the sample to draw from. Default: None

	mode (str [https://docs.python.org/3/library/stdtypes.html#str]) – One of ['train', 'val', 'test'].
Default: 'train'

Core Datasets

	
magnet.data.core.MNIST(val_split=0.2, path=PosixPath('/home/docs/.data'), **kwargs)

	The MNIST Dataset.

	Parameters

	
	val_split (float [https://docs.python.org/3/library/functions.html#float]) – The fraction of training data to hold out
as validation if validation set is not given. Default: 0.2

	path (pathlib.Path [https://docs.python.org/3/library/pathlib.html#pathlib.Path] or str [https://docs.python.org/3/library/stdtypes.html#str]) – The path to save the dataset to.
Default: Magnet Datapath

	Keyword Arguments

	() – See Data for more details.

Transforms

	
magnet.data.transforms.augmented_image_transforms(d=0, t=0, s=0, sh=0, ph=0, pv=0, resample=2)

	Returns a list of augmented transforms to be applied to natural images.

	Parameters

	
	d (sequence or float [https://docs.python.org/3/library/functions.html#float] or int [https://docs.python.org/3/library/functions.html#int]) – Range of degrees to select from.
Default: 0

	t (tuple [https://docs.python.org/3/library/stdtypes.html#tuple]) – Tuple of maximum absolute fraction for horizontal
and vertical translations. Default: 0

	s (tuple [https://docs.python.org/3/library/stdtypes.html#tuple], optional) – Scaling factor interval. Default: 0

	sh (sequence or float [https://docs.python.org/3/library/functions.html#float] or int [https://docs.python.org/3/library/functions.html#int], optional) – Range of shear. Default: 0

	ph (float [https://docs.python.org/3/library/functions.html#float]) – The probability of flipping the image horizontally.
Default: 0

	pv (float [https://docs.python.org/3/library/functions.html#float]) – The probability of flipping the image vertically.
Default: 0

	resample (int [https://docs.python.org/3/library/functions.html#int]) – An optional resampling filter. Default: 2

See torchvision.transforms for more details.

	
magnet.data.transforms.image_transforms(augmentation=0, direction='horizontal')

	Returns a list of transforms to be applied to natural images.

	Parameters

	
	augmentation (float [https://docs.python.org/3/library/functions.html#float]) – The percentage of augmentation to be applied.
Default: 0

	direction (str [https://docs.python.org/3/library/stdtypes.html#str]) – The direction to flip the image at random.
Default: 'horizontal'

Nodes

Node

	
class magnet.nodes.Node(*args, **kwargs)

	Abstract base class that defines MagNet’s Node implementation.

A Node is a ‘self-aware Module’.
It can dynamically parametrize itself in runtime.

For instance, a Linear Node can infer the input features automatically
when first called; a Conv Node can infer the dimensionality (1, 2, 3)
of the input automatically.

MagNet’s Nodes strive to help the developer as much as possible by
finding the right hyperparameter values automatically.
Ideally, the developer shouldn’t need to define anything
except the basic architecture and the inputs and outputs.

The arguments passed to the constructor are stored in a _args attribute
as a dictionary.

This is later modified by the build() method which get’s automatically
called on the first forward pass.

	Keyword Arguments

	name (str [https://docs.python.org/3/library/stdtypes.html#str]) – Class Name

Core

	
class magnet.nodes.Lambda(fn, **kwargs)

	Wraps a Node around any function.

	Parameters

	fn (callable) – The function which gets called in the forward pass

Examples:

>>> import magnet.nodes as mn

>>> import torch

>>> model = mn.Lambda(lambda x: x.mean())

>>> model(torch.arange(5, dtype=torch.float)).item()
2.0

>>> def subtract(x, y):
>>> return x - y

>>> model = mn.Lambda(subtract)

>>> model(2 * torch.ones(1), torch.ones(1)).item()
1.0

	
class magnet.nodes.Conv(c=None, k=3, p='half', s=1, d=1, g=1, b=True, ic=None, act='relu', bn=False, **kwargs)

	Applies a convolution over an input tensor.

	Parameters

	
	c (int [https://docs.python.org/3/library/functions.html#int]) – Number of channels produced by the convolution.

	Default – Inferred

	k (int [https://docs.python.org/3/library/functions.html#int] or tuple [https://docs.python.org/3/library/stdtypes.html#tuple]) – Size of the convolving kernel. Default: 3

	p (int [https://docs.python.org/3/library/functions.html#int], tuple [https://docs.python.org/3/library/stdtypes.html#tuple] or str [https://docs.python.org/3/library/stdtypes.html#str]) – Zero-padding added to both sides

	the input. Default (of) – 'half'

	s (int [https://docs.python.org/3/library/functions.html#int] or tuple [https://docs.python.org/3/library/stdtypes.html#tuple]) – Stride of the convolution. Default: 1

	d (int [https://docs.python.org/3/library/functions.html#int] or tuple [https://docs.python.org/3/library/stdtypes.html#tuple]) – Spacing between kernel elements. Default: 1

	g (int [https://docs.python.org/3/library/functions.html#int]) – Number of blocked connections from input channels

	output channels. Default (to) – 1

	b (bool [https://docs.python.org/3/library/functions.html#bool]) – If True, adds a learnable bias to the output.

	Default – True

	ic (int [https://docs.python.org/3/library/functions.html#int]) – Number of channels in the input image.

	Default – Inferred

	act (str [https://docs.python.org/3/library/stdtypes.html#str] or None [https://docs.python.org/3/library/constants.html#None]) – The activation function to use.

	Default – 'relu'

	p can be conveniently used for ‘half’, ‘same’ or ‘double’
padding to half, same or double the image size respectively.
The arguments are accordingly inferred at runtime.
For ‘half’ padding, the output channels (if not provided)
are set to twice the input channels to make up for the lost
information and vice-versa for the double padding.
For ‘same’ padding, the output channels are kept equal to the
input channels.
In all three cases, the dilation is set to 1 and the stride
is modified as required.

	c is inferred from the second dimension of the
input tensor.

	act is set to ‘relu’ by default unlike the PyTorch
implementation where activation functions need to be seperately
defined.
Take caution to manually set the activation to None, where needed.

Note

The dimensions (1, 2 or 3) of the convolutional kernels
are inferred from the corresponding shape of the input tensor.

Note

One can also create multiple Nodes using the convinient
multiplication (*) operation.

Multiplication with an integer \(n\), gives \(n\)
copies of the Node.

Multiplication with a list or tuple of integers,
\((c_1, c_2, ..., c_n)\) gives \(n\) copies
of the Node with c set to \(c_i\)

Shape:
- Input: \((N, C_{in}, *)\)
where * is any non-zero number of trailing dimensions.
- Output: \((N, C_{out}, *)\)

	Variables

	layer (nn.Module) – The Conv module built from torch.nn

Examples:

>>> import torch

>>> from torch import nn

>>> import magnet.nodes as mn
>>> from magnet.utils import summarize

>>> # A Conv layer with 32 channels and half padding
>>> model = mn.Conv(32)

>>> model(torch.randn(4, 16, 28, 28)).shape
torch.Size([4, 32, 14, 14])

>>> # Alternatively, the 32 in the constructor may be omitted
>>> # since it is inferred on runtime.

>>> # The same conv layer with 'double' padding
>>> model = mn.Conv(p='double')

>>> model(torch.randn(4, 16, 28, 28)).shape
torch.Size([4, 8, 56, 56])

>>> layers = mn.Conv() * 3
[Conv(), Conv(), Conv()]

>>> model = nn.Sequential(*layers)
>>> summarize(model)
+-------+------------+----------------------+
| Node | Shape | Trainable Parameters |
+-------+------------+----------------------+
| input | 16, 28, 28 | 0 |
+-------+------------+----------------------+
| Conv | 32, 14, 14 | 4,640 |
+-------+------------+----------------------+
| Conv | 64, 7, 7 | 18,496 |
+-------+------------+----------------------+
| Conv | 128, 4, 4 | 73,856 |
+-------+------------+----------------------+
Total Trainable Parameters: 96,992

	
class magnet.nodes.Linear(o, b=True, flat=True, i=None, act='relu', bn=False, **kwargs)

	Applies a linear transformation to the incoming tensor

	Parameters

	
	o (int [https://docs.python.org/3/library/functions.html#int], Required) – Output dimensions

	b (bool [https://docs.python.org/3/library/functions.html#bool]) – Whether to include a bias term. Default: True

	flat (bool [https://docs.python.org/3/library/functions.html#bool]) – Whether to flatten out the input to 2 dimensions.

	Default – True

	i (int [https://docs.python.org/3/library/functions.html#int]) – Input dimensions. Default: Inferred

	act (str [https://docs.python.org/3/library/stdtypes.html#str] or None [https://docs.python.org/3/library/constants.html#None]) – The activation function to use.

	Default – 'relu'

	bn (bool [https://docs.python.org/3/library/functions.html#bool]) – Whether to use Batch Normalization immediately after

	layer. Default (the) – False

	flat is used by default to flatten the input to a vector.
This is useful, say in the case of CNNs where an 3-D image based
output with multiple channels needs to be fed to several dense layers.

	o is inferred from the last dimension of the
input tensor.

	act is set to ‘relu’ by default unlike the PyTorch
implementation where activation functions need to be seperately
defined.
Take caution to manually set the activation to None, where needed.

Note

One can also create multiple Nodes using the convinient
multiplication (*) operation.

Multiplication with an integer \(n\), gives \(n\)
copies of the Node.

Multiplication with a list or tuple of integers,
\((o_1, o_2, ..., o_n)\) gives \(n\) copies
of the Node with o set to \(o_i\)

	Shape:

	
	If flat is True

	
	Input: \((N, *)\) where \(*\) means any number of
trailing dimensions

	Output: \((N, *)\)

	Else

	
	Input: \((N, *, in_features)\) where \(*\) means any
number of trailing dimensions

	Output: \((N, *, out_features)\) where all but the last
dimension are the same shape as the input.

	Variables

	layer (nn.Module) – The Linear module built from torch.nn

Examples:

>>> import torch

>>> from torch import nn

>>> import magnet.nodes as mn
>>> from magnet.utils import summarize

>>> # A Linear mapping to 10-dimensional space
>>> model = mn.Linear(10)

>>> model(torch.randn(64, 3, 28, 28)).shape
torch.Size([64, 10])

>>> # Don't flatten the input
>>> model = mn.Linear(10, flat=False)

>>> model(torch.randn(64, 3, 28, 28)).shape
torch.Size([64, 3, 28, 10])

>>> # Make a Deep Neural Network
>>> # Don't forget to turn the activation to None in the final layer
>>> layers = mn.Linear() * (10, 50) + [mn.Linear(10, act=None)]
[Linear(), Linear(), Linear()]

>>> model = nn.Sequential(*layers)
>>> summarize(model)
+------+---------+--------------------+--+
| Node | Shape |Trainable Parameters| Arguments |
+------+---------+--------------------+--+
|input |3, 28, 28| 0 | |
+------+---------+--------------------+--+
|Linear| 10 | 23,530 |bn=False, act=relu, i=2352, flat=True, b=True, o=10 |
+------+---------+--------------------+--+
|Linear| 50 | 550 |bn=False, act=relu, i=10, flat=True, b=True, o=50 |
+------+---------+--------------------+--+
|Linear| 10 | 510 |bn=False, act=None, i=50, flat=True, b=True, o=10 |
+------+---------+--------------------+--+
Total Trainable Parameters: 24,590

	
class magnet.nodes.RNN(h, n=1, b=False, bi=False, act='tanh', d=0, batch_first=False, i=None, **kwargs)

	Applies a multi-layer RNN with to an input tensor.

	Parameters

	
	h (int [https://docs.python.org/3/library/functions.html#int], Required) – The number of features in the hidden state h

	n (int [https://docs.python.org/3/library/functions.html#int]) – Number of layers. Default: 1

	b (bool [https://docs.python.org/3/library/functions.html#bool]) – Whether to include a bias term. Default: True

	bi (bool [https://docs.python.org/3/library/functions.html#bool]) – If True, becomes a bidirectional RNN.

	Default – False

	act (str [https://docs.python.org/3/library/stdtypes.html#str] or None [https://docs.python.org/3/library/constants.html#None]) – The activation function to use.

	Default – 'tanh'

	d (int [https://docs.python.org/3/library/functions.html#int]) – The dropout probability of the outputs of each layer.

	Default – 0

	batch_first (False) – If True, then the input and output

	are provided as ` (tensors) – False

	i (int [https://docs.python.org/3/library/functions.html#int]) – Input dimensions. Default: Inferred

	i is inferred from the last dimension of the
input tensor.

Note

One can also create multiple Nodes using the convinient
multiplication (*) operation.

Multiplication with an integer \(n\), gives \(n\)
copies of the Node.

Multiplication with a list or tuple of integers,
\((h_1, h_2, ..., h_n)\) gives \(n\) copies
of the Node with h set to \(h_i\)

	Variables

	layer (nn.Module) – The RNN module built from torch.nn

Examples:

>>> import torch

>>> from torch import nn

>>> import magnet.nodes as mn
>>> from magnet.utils import summarize

>>> # A recurrent layer with 32 hidden dimensions
>>> model = mn.RNN(32)

>>> model(torch.randn(7, 4, 300))[0].shape
torch.Size([7, 4, 32])

>>> # Attach a linear head
>>> model = nn.Sequential(model, mn.Linear(1000, act=None))

	
class magnet.nodes.LSTM(h, n=1, b=False, bi=False, d=0, batch_first=False, i=None, **kwargs)

	Applies a multi-layer LSTM with to an input tensor.

See mn.RNN for more details

	
class magnet.nodes.GRU(h, n=1, b=False, bi=False, d=0, batch_first=False, i=None, **kwargs)

	Applies a multi-layer GRU with to an input tensor.

See mn.RNN for more details

	
class magnet.nodes.BatchNorm(e=1e-05, m=0.1, a=True, track=True, i=None, **kwargs)

	Applies Batch Normalization to the input tensor
e=1e-05, m=0.1, a=True, track=True, i=None

	Parameters

	
	e (float [https://docs.python.org/3/library/functions.html#float]) – A small value added to the denominator

	numerical stability. Default (for) – 1e-5

	m (float [https://docs.python.org/3/library/functions.html#float] or None [https://docs.python.org/3/library/constants.html#None]) – The value used for the running_mean

	running_var computation. Can be set to None for (and) –

	moving average (cumulative) – 0.1

	a (bool [https://docs.python.org/3/library/functions.html#bool]) – Whether to have learnable affine parameters.

	Default – True

	track (bool [https://docs.python.org/3/library/functions.html#bool]) – Whether to track the running mean and variance.

	Default – True

	i (int [https://docs.python.org/3/library/functions.html#int]) – Input channels. Default: Inferred

	i is inferred from the second dimension of the
input tensor.

Note

The dimensions (1, 2 or 3) of the running mean and variance
are inferred from the corresponding shape of the input tensor.

Note

One can also create multiple Nodes using the convinient
multiplication (*) operation.

Multiplication with an integer \(n\), gives \(n\)
copies of the Node.

Multiplication with a list or tuple of integers,
\((i_1, i_2, ..., i_n)\) gives \(n\) copies
of the Node with i set to \(i_i\)

	Shape:

	
	Input: \((N, C, *)\) where \(*\) means any number of
trailing dimensions

	Output: \((N, C, *)\) (same shape as input)

	Variables

	layer (nn.Module) – The BatchNorm module built from torch.nn

Examples:

>>> import torch

>>> from torch import nn

>>> import magnet.nodes as mn
>>> from magnet.utils import summarize

>>> # A Linear mapping to 10-dimensional space
>>> model = mn.Linear(10)

>>> model(torch.randn(64, 3, 28, 28)).shape
torch.Size([64, 10])

>>> # Don't flatten the input
>>> model = mn.Linear(10, flat=False)

>>> model(torch.randn(64, 3, 28, 28)).shape
torch.Size([64, 3, 28, 10])

>>> # Make a Deep Neural Network
>>> # Don't forget to turn the activation to None in the final layer
>>> layers = mn.Linear() * (10, 50) + [mn.Linear(10, act=None)]
[Linear(), Linear(), Linear()]

>>> model = nn.Sequential(*layers)
>>> summarize(model)
+------+---------+--------------------+--+
| Node | Shape |Trainable Parameters| Arguments |
+------+---------+--------------------+--+
|input |3, 28, 28| 0 | |
+------+---------+--------------------+--+
|Linear| 10 | 23,530 |bn=False, act=relu, i=2352, flat=True, b=True, o=10 |
+------+---------+--------------------+--+
|Linear| 50 | 550 |bn=False, act=relu, i=10, flat=True, b=True, o=50 |
+------+---------+--------------------+--+
|Linear| 10 | 510 |bn=False, act=None, i=50, flat=True, b=True, o=10 |
+------+---------+--------------------+--+
Total Trainable Parameters: 24,590

magnet.training

Trainer

	
class magnet.training.Trainer(models, optimizers)

	Abstract base class for training models.

The Trainer class makes it incredibly simple and convinient to train,
monitor, debug and checkpoint entire Deep Learning projects.

Simply define your training loop by
implementing the optimize() method.

	Parameters

	
	models (list of nn.Module) – All the models that need
to be trained

	optimizers (list of optim.Optimizer) – Any optimizers that
are used

Note

If any model is in eval() model, the trainer is set off.
This means that as per protocol, all models will not train.

	Variables

	callbacks (list [https://docs.python.org/3/library/stdtypes.html#list]) – A list of callbacks attached to the trainer.

Take a look at SupervisedTrainer for an idea on how to extend this class.

	
optimize()

	Defines the core optimization loop.
This method is called on each iteration.

Two quick protocols that one needs to follow are:

1. Do NOT actually backpropagate or step() the optimizers if the
trainer is not training. Use the is_training() method
to find out.
This is essential since this will ensure that the trainer behaves
as expected when is_training() is False.
Useful, for example, in cases like callbacks.ColdStart

2. Send a callback the signal 'gradient' with a keyword argument
'models' that is the list of models that accumulate a gradient.
Usually, it’s all the modules (self.modules).

Any callbacks that listen to this signal are interested in the gradient
information (eg. callbacks.Babysitter).

	
train(dataloader, epochs=1, callbacks=[], **kwargs)

	Starts the training process.

	Parameters

	
	dataloader (DataLoader) – The MagNet dataloader that iterates
over the training set

	epochs (float [https://docs.python.org/3/library/functions.html#float] or int [https://docs.python.org/3/library/functions.html#int]) – The number of epochs to train for.
Default: 1

	callbacks (list [https://docs.python.org/3/library/stdtypes.html#list]) – Any callbacks to be attached. Default: []

	Keyword Arguments

	iterations (int [https://docs.python.org/3/library/functions.html#int]) – The number of iterations to train for

:keyword Overrides epochs.:

Note

PyTorch DataLoader s are not supported.

Ideally, encapsulate your dataset in the Data class.

	
mock(path=None)

	A context manager that creates a temporary ‘safe’ scope for training.

All impact to stateful objects (models, optimizers and the
trainer itself) are forgotten once out of this scope.

This is very useful if you need to try out what-if experiments.

	Parameters

	path (pathlib.Path [https://docs.python.org/3/library/pathlib.html#pathlib.Path]) – The path to save temporary states into
Default: {System temp directory}/.mock_trainer

	
epochs(mode=None)

	The number of epochs completed.

	Parameters

	mode (str [https://docs.python.org/3/library/stdtypes.html#str] or None [https://docs.python.org/3/library/constants.html#None]) – If the mode is 'start' or 'end', a
boolean is returned signalling if it’s the start or end of an epoch

	
register_parameter(name, value)

	Use this to register ‘stateful’ parameters that are serialized

SupervisedTrainer

	
class magnet.training.SupervisedTrainer(model, optimizer='adam', loss='cross_entropy', metrics=[])

	A simple trainer that implements a supervised approach where a simple
model \(\hat{y} = f(x)\) is trained to map \(\hat{y}\) to
ground-truth \(y\) according to some specified loss.

This is the training routine that most high-level deep learning frameworks
implement.

	Parameters

	
	model (nn.Module) – The model that needs to be trained

	optimizer (str [https://docs.python.org/3/library/stdtypes.html#str] or optim.Optimzer) – The optimizer used to train
the model. Default: 'adam'

	loss (str or callable) – A loss function that gives the objective
to be minimized. Default: 'cross_entropy'

	metrics (list [https://docs.python.org/3/library/stdtypes.html#list]) – Any other metrics that need to be monitored.
Default: []

	optimizer can be an actual optim.Optimizer instance or the
name of a popular optimzizer (eg. 'adam').

	loss can be a function or the name of a popular
loss function (eg. 'cross_entropy').
It should accept 2 arguments (\(\hat{y}\), \(y\)).

	metrics should contain a list of functions which accept
2 arguments (\(\hat{y}\), \(y\)), like the loss function.

Note

A static validate() function is provided for the
validation callback

Note

The metrics is of no use unless there is some
callback (eg.``callbacks.Monitor``) to receive the metrics

Examples:

>>> import magnet as mag
>>> import magnet.nodes as mn

>>> from magnet.data import Data
>>> from magnet.training import callbacks, SupervisedTrainer

>>> data = Data.get('mnist')

>>> model = mn.Linear(10, act=None)
>>> model.build(x=next(data())[0])

>>> trainer = SupervisedTrainer(model)
>>> callbacks=[callbacks.Monitor(),
 callbacks.Validate(data(64, mode='val'), SupervisedTrainer.validate)]
>>> trainer.train(data(64, shuffle=True), 1, callbacks)

	
magnet.training.finish_training(path, names=None)

	A helper function for cleaning up the training logs and other
checkpoints and retaining only the state_dicts of the trained models.

	Parameters

	
	path (pathlib.Path [https://docs.python.org/3/library/pathlib.html#pathlib.Path]) – The path where the trainer was checkpointed

	names (list [https://docs.python.org/3/library/stdtypes.html#list]) – The names of the models in the order given to the trainer.
Default: None

	names can be used if the models themselves did not have names
prior to training.
The checkpoints default to an ordered naming scheme.
If passed, the files are additionally renamed to these names.

Note

Does nothing / fails silently if the path does not exist.

Example:

>>> # Assume that we've defined two models - encoder and decoder,
>>> # and a suitable trainer. The models do not have a 'name' attribute.

>>> trainer.save_state(checkpoint_path / 'my-trainer')

>>> # Suppose the checkpoint directory contains the following files:
>>> # my-trainer/
>>> # models/
>>> # 0.pt
>>> # 1.pt
>>> # callbacks/
>>> # monitor/
>>> # babysitter/
>>> # state.p

>>> finish_training(path, names=['encoder', 'decoder'])

>>> # Now the directory contains these files:
>>> # encoder.pt
>>> # decoder.pt

magnet.training.callbacks

CallbackQueue

	
class magnet.training.callbacks.CallbackQueue

	A container for multiple callbacks that can be called in parallel.

If multiple callbacks need to be called together (as intended), they
can be registered via this class.

Since callbacks need to be unique (by their name), this class also ensures
that there are no duplicates.

	
__call__(signal, *args, **kwargs)

	Broadcasts a signal to all registered callbacks along with
payload arguments.

	Parameters

	signal (object [https://docs.python.org/3/library/functions.html#object]) – Any object that is broadcast as a signal.

Note

Any other arguments will be sent as-is to the callbacks.

	
find(name)

	Scans through the registered list and
finds the callback with name.

If not found, returns None.

	Raises

	RuntimeError [https://docs.python.org/3/library/exceptions.html#RuntimeError] – If multiple callbacks are found.

Monitor

	
class magnet.training.callbacks.Monitor(frequency=10, show_progress=True, **kwargs)

	Allows easy monitoring of the training process.

Stores any metric / quantity broadcast using the 'write_stats' signal.

Also adds a nice progress bar!

	Parameters

	
	frequency (int [https://docs.python.org/3/library/functions.html#int]) – Then number of times per epoch to flush the buffer.
Default: 10

	show_progress (bool [https://docs.python.org/3/library/functions.html#bool]) – If True, adds a progress bar.
Default: True

	Keyword Arguments

	name (str [https://docs.python.org/3/library/stdtypes.html#str]) – Name of this callback. Default: 'monitor'

	frequency is useful only if there are buffered metrics.

Examples:

>>> import torch

>>> import magnet as mag
>>> import magnet.nodes as mn

>>> from magnet.training import callbacks, SupervisedTrainer

>>> model = mn.Linear(10, act=None)
>>> with mag.eval(model): model(torch.randn(4, 1, 28, 28))

>>> trainer = SupervisedTrainer(model)

>>> callbacks = callbacks.CallbackQueue([callbacks.Monitor()])
>>> callbacks(signal='write_stats', trainer=trainer, key='loss', value=0.1)

>>> callbacks[0].history
{'loss': [{'val': 0.1}]}

	
__call__(trainer, signal, **kwargs)

	Responds to the following signals:

	'write_stats': Any keyword arguments will be passed to the
History.append() method.

	'on_training_start': To be called before start of training.
Initializes the progress bar.

	'on_batch_start': Called before the training loop.
Updates the progress bar.

	'on_batch_end': Called after the training loop.
Flushes the history buffer if needed and
sets the progress bar description.

	'on_training_end': To be called after training.
Closes the progress bar.

	'load_state': Loads the state of this callback from path.

	'save_state': Saves the state of this callback to path.

	
show(metric=None, log=False, x_key='epochs', **kwargs)

	Calls the corresponding History.show() method.

Validate

	
class magnet.training.callbacks.Validate(dataloader, validate, frequency=10, batches=None, drop_last=False, **kwargs)

	Runs a validation function over a dataset during the course of training.

Most Machine Learning research uses a held out validation set as a proxy
for the test set / real-life data. Hyperparameters are usually tuned
on the validation set.

Often, this is done during training in order to view the simultaneous
learning on the validation set and catch any overfitting / underfitting.

This callback enables you to run a custom :py:meth`validate` function
over a dataloader.

	Parameters

	
	dataloader (DataLoader) – DataLoader containing the validation set

	validate (bool [https://docs.python.org/3/library/functions.html#bool]) – A callable that does the validation

	frequency (int [https://docs.python.org/3/library/functions.html#int]) – Then number of times per epoch to run the function.
Default: \(10\)

	batches (int [https://docs.python.org/3/library/functions.html#int] or None [https://docs.python.org/3/library/constants.html#None]) – The number of times / batches to call the validate
function in each run. Default: None

	drop_last (bool [https://docs.python.org/3/library/functions.html#bool]) – If True, the last batch is not run.
Default: False

	Keyword Arguments

	name (str [https://docs.python.org/3/library/stdtypes.html#str]) – Name of this callback. Default: 'validate'

	validate is a function which takes two arguments:
(trainer, dataloader).

	batches defaults to a value which ensures that an epoch of the
validation set matches an epoch of the training set.

For instance, if the training set has \(80\) datapoints and the
validation set has \(20\) and the batch size is \(1\) for both,
an epoch consists of \(80\) iterations for the training set and
\(20\) for the validation set.

If the validate function is run \(10\) times(frequency)
per epoch of the training set, then batches must be \(2\).

	
__call__(trainer, signal, **kwargs)

	Responds to the following signals:

	'on_training_start': To be called before start of training.
Automatically finds the number of batches per run.

	'on_batch_end': Called after the training loop.
Calls the validate function.

	'on_training_end': To be called after training.
If drop_last, calls the validate function.

	'load_state': Loads the state of this callback from path.

	'save_state': Saves the state of this callback to path.

Checkpoint

	
class magnet.training.callbacks.Checkpoint(path, interval='5 m', **kwargs)

	Serializes stateful objects during the training process.

For many practical Deep Learning projects,
training takes many hours, even days.

As such, it is only natural that you’d want to save the progress every
once in a while.

This callback saves the models, optimizers, schedulers and the trainer
itself periodically and automatically loads from those states if found.

	Parameters

	
	path (pathlib.Path [https://docs.python.org/3/library/pathlib.html#pathlib.Path]) – The root path to save to

	interval (str [https://docs.python.org/3/library/stdtypes.html#str]) – The time between checkpoints. Default: ‘5 m’

	Keyword Arguments

	name (str [https://docs.python.org/3/library/stdtypes.html#str]) – Name of this callback. Default: 'checkpoint'

	interval should be a string of the form '{duration} {unit}'.
Valid units are: 'us' (microseconds), 'ms' (milliseconds),
's' (seconds), 'm' (minutes)’, 'h' (hours), 'd' (days).

	
__call__(trainer, signal, **kwargs)

	Responds to the following signals:

	'on_training_start': To be called before start of training.
Creates the path if it doesn’t exist and loads from it if it does.
Also sets the starting time.

	'on_batch_end': Called after the training loop.
Checkpoints if the interval is crossed and resets the clock.

	'on_training_end': To be called after training.
Checkpoints one last time.

	'load_state': Loads the state of this callback from path.

	'save_state': Saves the state of this callback to path.

ColdStart

	
class magnet.training.callbacks.ColdStart(epochs=0.1, **kwargs)

	Starts the trainer in eval mode for a few iterations.

Sometimes, you may want to find out how the model performs
prior to any training. This callback freezes the training initially.

	Parameters

	epochs (float [https://docs.python.org/3/library/functions.html#float]) – The number of epochs to freeze the trainer. Default: 0.1

	Keyword Arguments

	name (str [https://docs.python.org/3/library/stdtypes.html#str]) – Name of this callback. Default: 'coldstart'

	
__call__(trainer, signal, **kwargs)

	Responds to the following signals:

	'on_training_start': To be called before start of training.
Sets the models in eval mode.

	'on_batch_end': Called after the training loop.
If the epochs is exhausted, unfreezes the trainer and
removes this callback from the queue.

LRScheduler

	
class magnet.training.callbacks.LRScheduler(scheduler, **kwargs)

	A helper callback to add in optimizer schedulers.

	Parameters

	scheduler (LRScheduler) – The scheduler.

	Keyword Arguments

	name (str [https://docs.python.org/3/library/stdtypes.html#str]) – Name of this callback. Default: 'lr_scheduler'

	
__call__(trainer, signal, **kwargs)

	Responds to the following signals:

	'on_batch_start': Called before the training loop.
If it is the start of an epoch, steps the scheduler.

magnet.training.history

magnet.training.utils

	
magnet.training.utils.load_object(path, **kwargs)

	A convinience method to unpickle a file.

	Parameters

	path (pathlib.Path [https://docs.python.org/3/library/pathlib.html#pathlib.Path]) – The path to the pickle file

	Keyword Arguments

	default (object [https://docs.python.org/3/library/functions.html#object]) – A default value to be returned
if the file does not exist. Default: None

	Raises

	RuntimeError [https://docs.python.org/3/library/exceptions.html#RuntimeError] – If a default keyword argument is not provided and the
file is not found.

	
magnet.training.utils.load_state(module, path, alternative_name=None)

	Loads the state_dict of a PyTorch object from a specified path.

This is a more robust version of the of the PyTorch way in the sense that
the device mapping is automatically handled.

	Parameters

	
	module (object [https://docs.python.org/3/library/functions.html#object]) – Any PyTorch object that has a state_dict

	path (pathlib.Path [https://docs.python.org/3/library/pathlib.html#pathlib.Path]) – The path to folder containing the state_dict file

	alternative_name (str [https://docs.python.org/3/library/stdtypes.html#str] or None [https://docs.python.org/3/library/constants.html#None]) – A fallback name for the file if the
module object does not have a name attribute. Default: None

	Raises

	RuntimeError [https://docs.python.org/3/library/exceptions.html#RuntimeError] – If no alternative_name is provided and the module
does not have a name.

Note

If you already know the file name, set alternative_name to that.

This is just a convinience method that assumes that the file name
will be the same as the name of the module (if there is one).

	
magnet.training.utils.save_object(obj, path)

	A convinience method to pickle an object.

	Parameters

	
	obj (object [https://docs.python.org/3/library/functions.html#object]) – The object to pickle

	path (pathlib.Path [https://docs.python.org/3/library/pathlib.html#pathlib.Path]) – The path to save to

Note

If the path does not exists, it is created.

	
magnet.training.utils.save_state(module, path, alternative_name=None)

	Saves the state_dict of a PyTorch object to a specified path.

	Parameters

	
	module (object [https://docs.python.org/3/library/functions.html#object]) – Any PyTorch object that has a state_dict

	path (pathlib.Path [https://docs.python.org/3/library/pathlib.html#pathlib.Path]) – The path to a folder to save the state_dict to

	alternative_name (str [https://docs.python.org/3/library/stdtypes.html#str] or None [https://docs.python.org/3/library/constants.html#None]) – A fallback name for the file if the
module object does not have a name attribute. Default: None

	Raises

	RuntimeError [https://docs.python.org/3/library/exceptions.html#RuntimeError] – If no alternative_name is provided and the module
does not have a name.

Debugging

	
magnet.debug.overfit(trainer, data, batch_size, epochs=1, metric='loss', **kwargs)

	Runs training on small samples of the dataset in order to overfit.

If you can’t overfit a small sample, you can’t model the data well.

This debugger tries to overfit on multple small samples of the data.
The sample size and batch sizes are varied and the training is done for
a fixed number of epochs.

This usually gives an insight on what to expect from the actual training.

	Parameters

	
	trainer (magnet.trainer.Trainer) – The Trainer object

	data (magnet.data.Data) – The data object used for training

	batch_size (int [https://docs.python.org/3/library/functions.html#int]) – The intended batch size

	epochs (float [https://docs.python.org/3/library/functions.html#float]) – The expected epochs for convergence for 1% of the data.
Default: 1

	metric (str [https://docs.python.org/3/library/stdtypes.html#str]) – The metric to plot.
Default: 'loss'

Note

The maximum sample size is 1% of the size of the dataset.

Examples:

>>> import magnet as mag
>>> import magnet.nodes as mn
>>> import magnet.debug as mdb

>>> from magnet.data import Data
>>> from magnet.training import SupervisedTrainer

>>> data = Data.get('mnist')

>>> model = mn.Linear(10)
>>> with mag.eval(model): model(next(data())[0])

>>> trainer = SupervisedTrainer(model)

>>> mdb.overfit(trainer, data, batch_size=64)

[image: _images/overfit-fail.png]
>>> # Oops! Looks like there was something wrong.
>>> # Loss does not considerable decrease for samples sizes >= 4.
>>> # Of course, the activation was 'relu'.
>>> model = mn.Linear(10, act=None)
>>> with mag.eval(model): model(next(data())[0])

>>> trainer = SupervisedTrainer(model)

>>> mdb.overfit(trainer, data, batch_size=64)
>>> # Should be much better now.

[image: _images/overfit-pass.png]

	
magnet.debug.check_flow(trainer, data)

	Checks if any trainable parameter is not receiving gradients.

Super useful for large architectures that use the .detach() function.

	Parameters

	
	trainer (magnet.trainer.Trainer) – The Trainer object

	data (magnet.data.Data) – The data object used for training

	
class magnet.debug.Babysitter(frequency=10, **kwargs)

	A callback which monitors the mean relative gradients
for all parameters.

	Parameters

	frequency (int [https://docs.python.org/3/library/functions.html#int]) – Then number of times per epoch to monitor.
Default: 10

	Keyword Arguments

	name (str [https://docs.python.org/3/library/stdtypes.html#str]) – Name of this callback. Default: 'babysitter'

	
magnet.debug.shape(debug=True)

	The shapes of every tensor is printed out if a module is called
within this context manager.

Useful for debugging the flow of tensors through layers and finding
the values of various hyperparameters.

	Parameters

	debug (bool [https://docs.python.org/3/library/functions.html#bool] or str [https://docs.python.org/3/library/stdtypes.html#str]) – If str, only the tensor with this name
is tracked. If True, all tensors are tracked.
Else, nothing is tracked.

magnet.utils

	
magnet.utils.summarize(module, x, parameters='trainable', arguments=False, batch=False, max_width=120)

	Prints a pretty picture of how a one-input one output sequential model works.

Similar to Model.summarize found in Keras.

	Parameters

	
	module (nn.Module) – The module to summarize

	x (torch.Tensor) – A sample tensor sent as input to
the module.

	parameters (str [https://docs.python.org/3/library/stdtypes.html#str] or True) – Which kind of parameters to enumerate.
Default: 'trainable'

	arguments (bool [https://docs.python.org/3/library/functions.html#bool]) – Whether to show the arguments to a node.
Default: False

	batch (bool [https://docs.python.org/3/library/functions.html#bool]) – Whether to show the batch dimension in the shape.
Default: False

	max_width (int [https://docs.python.org/3/library/functions.html#int]) – The maximum width of the table. Default: 120

	parameters is one of [‘trainable’, ‘non-trainable’, ‘all’, True].

‘trainable’ parameters are the ones which require gradients and
can be optimized by SGD.

Setting this to True will print both types as a tuple.

magnet.utils.images

magnet.utils.plot

magnet.utils.varseq

	
magnet.utils.varseq.pack(sequences, lengths=None)

	Packs a list of variable length Tensors

	Parameters

	
	sequences (list [https://docs.python.org/3/library/stdtypes.html#list] or torch.Tensor [https://pytorch.org/docs/stable/tensors.html#torch.Tensor]) – The list of Tensors to pack

	lengths (list [https://docs.python.org/3/library/stdtypes.html#list]) – list of lengths of each tensor. Default: None

Note

If sequences is a tensor, lengths needs to be provided.

Note

The packed sequence that is returned has a convinient unpack()
method as well as shape and order attributes.
The order attribute stores the sorting order which should be used
for unpacking.

	Shapes:

	sequences should be a list of Tensors of size L x *,
where L is the length of a sequence and * is any number of trailing
dimensions, including zero.

	
magnet.utils.varseq.unpack(sequence, as_list=False)

	Unpacks a PackedSequence object.

	Parameters

	
	sequence (PackedSequence) – The tensor to unpack.

	as_list (bool [https://docs.python.org/3/library/functions.html#bool]) – If True, returns a list of tensors.
Default: False

Note

The sequence should have an order attribute
that stores the sorting order.

	
magnet.utils.varseq.sort(sequences, order, dim=0)

	Sorts a tensor in a certain order along a certain dimension.

	Parameters

	
	sequences (torch.Tensor [https://pytorch.org/docs/stable/tensors.html#torch.Tensor]) – The tensor to sort

	order (numpy.ndarray [https://docs.scipy.org/doc/numpy/reference/generated/numpy.ndarray.html#numpy.ndarray]) – The sorting order

	dim (int [https://docs.python.org/3/library/functions.html#int]) – The dimension to sort. Default 0

	
magnet.utils.varseq.unsort(sequences, order, dim=0)

	Unsorts a tensor in a certain order along a certain dimension.

	Parameters

	
	sequences (torch.Tensor [https://pytorch.org/docs/stable/tensors.html#torch.Tensor]) – The tensor to unsort

	order (numpy.ndarray [https://docs.scipy.org/doc/numpy/reference/generated/numpy.ndarray.html#numpy.ndarray]) – The sorting order

	dim (int [https://docs.python.org/3/library/functions.html#int]) – The dimension to unsort. Default 0

 Python Module Index

 m

 		 	

 		
 m	

 	[image: -]
 	
 magnet	

 	
 	
 magnet.data	

 	
 	
 magnet.data.core	

 	
 	
 magnet.data.transforms	

 	
 	
 magnet.debug	

 	
 	
 magnet.nodes	

 	
 	
 magnet.training	

 	
 	
 magnet.training.callbacks	

 	
 	
 magnet.training.utils	

 	
 	
 magnet.utils	

 	
 	
 magnet.utils.varseq	

Index

 _
 | A
 | B
 | C
 | D
 | E
 | F
 | G
 | I
 | L
 | M
 | N
 | O
 | P
 | R
 | S
 | T
 | U
 | V

_

 	
 	__call__() (magnet.data.Data method)

 	(magnet.training.callbacks.CallbackQueue method)

 	(magnet.training.callbacks.Checkpoint method)

 	(magnet.training.callbacks.ColdStart method)

 	(magnet.training.callbacks.LRScheduler method)

 	(magnet.training.callbacks.Monitor method)

 	(magnet.training.callbacks.Validate method)

A

 	
 	augmented_image_transforms() (in module magnet.data.transforms)

B

 	
 	Babysitter (class in magnet.debug)

 	
 	BatchNorm (class in magnet.nodes)

C

 	
 	CallbackQueue (class in magnet.training.callbacks)

 	check_flow() (in module magnet.debug)

 	
 	Checkpoint (class in magnet.training.callbacks)

 	ColdStart (class in magnet.training.callbacks)

 	Conv (class in magnet.nodes)

D

 	
 	Data (class in magnet.data)

E

 	
 	epochs() (magnet.training.Trainer method)

 	
 	eval() (in module magnet)

F

 	
 	find() (magnet.training.callbacks.CallbackQueue method)

 	
 	finish_training() (in module magnet.training)

G

 	
 	GRU (class in magnet.nodes)

I

 	
 	image_transforms() (in module magnet.data.transforms)

L

 	
 	Lambda (class in magnet.nodes)

 	Linear (class in magnet.nodes)

 	load_object() (in module magnet.training.utils)

 	
 	load_state() (in module magnet.training.utils)

 	LRScheduler (class in magnet.training.callbacks)

 	LSTM (class in magnet.nodes)

M

 	
 	magnet (module)

 	magnet.data (module)

 	magnet.data.core (module)

 	magnet.data.transforms (module)

 	magnet.debug (module)

 	magnet.nodes (module)

 	magnet.training (module)

 	
 	magnet.training.callbacks (module)

 	magnet.training.utils (module)

 	magnet.utils (module)

 	magnet.utils.varseq (module)

 	MNIST() (in module magnet.data.core)

 	mock() (magnet.training.Trainer method)

 	Monitor (class in magnet.training.callbacks)

N

 	
 	Node (class in magnet.nodes)

O

 	
 	optimize() (magnet.training.Trainer method)

 	
 	overfit() (in module magnet.debug)

P

 	
 	pack() (in module magnet.utils.varseq)

R

 	
 	register_parameter() (magnet.training.Trainer method)

 	
 	RNN (class in magnet.nodes)

S

 	
 	save_object() (in module magnet.training.utils)

 	save_state() (in module magnet.training.utils)

 	shape() (in module magnet.debug)

 	
 	show() (magnet.training.callbacks.Monitor method)

 	sort() (in module magnet.utils.varseq)

 	summarize() (in module magnet.utils)

 	SupervisedTrainer (class in magnet.training)

T

 	
 	train() (magnet.training.Trainer method)

 	
 	Trainer (class in magnet.training)

U

 	
 	unpack() (in module magnet.utils.varseq)

 	
 	unsort() (in module magnet.utils.varseq)

V

 	
 	Validate (class in magnet.training.callbacks)

 _static/img/logo-full.png

_static/img/logo.png

_static/comment-bright.png

_images/overfit-pass.png
Loss vs Epochs

10°
10-1
10-2
%]
[
S10-2
1,1
— 1,2
-4
L —
— 1,8
—— 1,16
s ,
071 1616
—— 64,480
20 40 60 80 100

epochs

_static/img/overfit-fail.png
Loss vs Epochs

10°

107t

1072

107 1,16

16, 16
64, 480

Loss
RERRRN =

20 40 60 80 100
epochs

_static/ajax-loader.gif

_static/img/overfit-pass.png
Loss vs Epochs

10°
10-1
10-2
%]
[
S10-2
1,1
— 1,2
-4
L —
— 1,8
—— 1,16
s ,
071 1616
—— 64,480
20 40 60 80 100

epochs

_static/down-pressed.png

_static/down.png

_static/comment-close.png

_static/comment.png

_static/file.png

_images/overfit-fail.png
Loss vs Epochs

10°

107t

1072

107 1,16

16, 16
64, 480

Loss
RERRRN =

20 40 60 80 100
epochs

nav.xhtml

 Table of Contents

 		
 Welcome to MagNet’s documentation!

 		
 magnet

 		
 magnet.data

 		
 Data

 		
 Core Datasets

 		
 Transforms

 		
 magnet.nodes

 		
 Node

 		
 Core

 		
 magnet.training

 		
 Trainer

 		
 SupervisedTrainer

 		
 magnet.training.callbacks

 		
 CallbackQueue

 		
 Monitor

 		
 Validate

 		
 Checkpoint

 		
 ColdStart

 		
 LRScheduler

 		
 magnet.training.history

 		
 magnet.training.utils

 		
 magnet.debug

 		
 magnet.utils

 		
 magnet.utils.images

 		
 magnet.utils.plot

 		
 magnet.utils.varseq

_static/plus.png

_static/logo.png

_static/minus.png

_static/img/logo-filled-full.png

_static/up-pressed.png

_static/up.png

_static/img/logo-filled.png

